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Biases present in maximum likelihood and parsimony
are investigated through a simulation study in a 10-taxon
case in which several long branches coexist with short
branches in the modeled topology. The performance of
these methods is explored while increasing the length
of the long branches with different amounts of data. Also,
simulations with different taxonomic sampling schemes
are examined through this study. The presence of a strong
bias in parsimony is corroborated: the well-known long-
branch attraction. Likelihood performance is found to
be sensitive to the mere presence extreme of branch
length disparity, retrieving topologies compatible with
(Farris, 1983; Kim, 1998; Siddall, 1998). Second, the

choice between likelihood and parsimony relies mainly

on the acceptance or rejection of the assumption that
long-branch attraction and long-branch repulsion, irre-
spective of the correctness of the model used. q 2001 The

Willi Hennig Society

INTRODUCTION

Studies on the performance of simulated datasets

have been conducted in order to analyze the perform-
ance of methods for phylogeny reconstruction under

controlled conditions. These types of analyses consist

of a two-step procedure. The first step is the creation of

datasets according to a Markovian model of character
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change and a defined element of the tree space.1 The

second step is the analysis of simulated datasets using

different methodologies for the posterior comparison

of the retrieved trees with the true topology.

Most of the previous approaches to simulated data-

sets were done with the aim of producing a controlled

simulation of an evolutionary process, and the analysis

of the datasets under different methodologies was

done in order to infer the suitability of these methods

for recovering phylogenetic information (e.g., Huelsen-

beck and Hillis, 1993; Huelsenbeck, 1995, p. 34). How-

ever, this approach to simulation studies is not entirely

satisfactory. First, as was pointed out earlier, it is cer-

tainly feasible but not really meaningful for choosing

a method to find a particular scenario in which a certain

method retrieves a wrong answer (Farris, 1983; Ed-

wards, 1995; Siddall, 1998). Any method that performs

well in one set of circumstances is bound to perform

poorly in others, and findings may be interpreted just

as a limiting case tied to its domain of application
a particular stochastic model is driving the nucleotide

1The various combinations of branch-length conditions possible

for a given tree (Huelsenbeck and Hillis, 1993).

0748-3007/01 $35.00

Copyright q 2001 by The Willi Hennig Society

All rights of reproduction in any form reserved



ferent methods in this particular 4T case and finding
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transformations along the entire sequence analyzed.

Thus, simulated datasets constructed under such a

model can hardly provide evidence for taking either a

cladistic or a likelihood approach (Edwards, 1995).

The present analysis does not intend to simulate da-

tasets as a proxy of an evolutionary process and meas-

ure the probability that each method has for recon-

structing the pattern of such an “evolutionary” process.

The aim of the present approach is, rather, the creation

of stochastically modeled datasets for which we know

the degree of similarity with the assumed model em-

ployed in likelihood analysis. Thus, through simula-

tion studies it is possible to test the robustness of likeli-

hood methods (i.e., how they perform under violations

of the model assumptions) and to explore the biases

(i.e., systematic errors) inherent to likelihood ap-

proaches to phylogenetic inference (Chang, 1996; Yang,

1996; Huelsenbeck, 1998; Bruno and Halpern, 1999). In

parsimony analyses, since it is claimed that there is no

stochastic model of character change underlying the

analysis, it is not possible to explore the statistical ro-

bustness of the method. However, it is certainly possi-

ble and useful to analyze the existence of biases in the

method under certain conditions (i.e., different kinds of

information determined by some dataset parameters,

such as base composition or other sequence disparity).

Previous approaches were concerned mainly with

counting the proportion of correct answers that each

method retrieves, instead of the identification of the

underlying biases. Low percentages of recovery of the

true topology may be indicative of the extent of bias,

but they say nothing about what biases are causing

the misleading results. These systematic errors are

problems that affect real (finite) dataset analyses and

are present in methods even if statistical consistency

is warranted with infinite amounts of data (Lehmann,

1983; Kuhner and Felsenstein, 1994). Thus, we will

focus our attention here on the specifics of incorrect

topologies, not only that they are wrong, but how they

are wrong. The aim of this approach is the discovery

of an association between certain values of dataset pa-

rameters and the choice of a particular type of wrong

topology (i.e., biases of the methods under analysis).

Another difference from previous approaches is the

dimension of the study case analyzed. The majority of
past simulation analyses were restricted to a particular

segment of a four-taxon tree space. One extensively

analyzed case consists of a four-taxon tree (4T case),
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in which two terminal long branches are the sister taxa

to two short terminal branches and are connected by

a short internodal branch (Fig. 1A). Felsenstein (1978)

was the first to study this case, noting that if characters

are set according to a stochastic model of change with

a fixed number of possible states (e.g., nucleotide se-

quences), as the number of characters and the length

of the long branches increase, parsimony is statistically

inconsistent, recovering the long branches as sister taxa

(Fig. 1A). In contrast, a simple model of stochastic

evolution in a maximum-likelihood analysis can re-

cover the true topology. Several studies followed

Felsenstein (1978), focusing on the performance of dif-
similar misleading results for parsimony and accurate

results for maximum likelihood (e.g., Hillis and

FIG. 1. Previous approaches in a 4T case. (A) The Felsenstein zone,

in which the two long-branched taxa are not sister groups in the

modeled (true) tree. In this case, parsimony retrieves an incorrect

tree while likelihood succeeds in choosing the correct tree. (B) The

Farris zone, in which the long-branched taxa are sister groups in
the modeled tree. Parsimony considers the correct tree as the optimal

solution while likelihood retrieves an incorrect tree (for datasets of

up to 10,000 characters).



sequence lengths (5 and 10 kb) in order to assess the
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Huelsenbeck, 1993; Tateno et al., 1994; Gaut and Lewis,

1995; Huelsenbeck, 1995; Nei et al., 1995; Yang, 1996).

As a result, parsimony was usually seen as the method

suffering from a pervasive kind of flaw, long-branch

attraction (LBA), in an area of the tree space, now called

the Felsenstein zone.

A few simulation studies explored other kinds of 4T

tree space, in which the long branches were sister taxa

in the true topology (Fig. 1B; Russo et al., 1996; Yang,

1996, 1997; Siddall, 1998; Bruno and Halpern, 1999). In

datasets of up to 10,000 characters, likelihood perform-

ance was poor and, when analyzed, parsimony per-

formed much better (Russo et al., 1996; Yang, 1996;

Siddall, 1998). The results found were opposite to those

of the Felsenstein zone, and thus this segment of the

tree space is now called the Farris zone (Siddall, 1998)

or the anti-Felsenstein zone (Bruno and Halpern, 1999).

Siddall (1998) proposed the presence of a bias in likeli-

hood results, naming it long-branch repulsion (LBR),

since the long branches were not recovered as sister

taxa. However, Yang (1996) attributed these results to

LBA in parsimony becoming an advantage of this

method when the true tree happens to have the long

branches clustered together. What is not clear from

these simulation studies is whether parsimony outper-

forms likelihood for reasons other than merely suc-

cumbing to its own vices at the right time.

In the present approach the performance of parsi-

mony and likelihood is analyzed in a more complex

scenario, a 10-taxon case in which there are 4 long and

13 short branches. The choice of this restricted part of

the potentially vast 10-taxon tree space was made in

order to analyze the effect of the simultaneous presence

of long branches being sister and nonsister taxa. Al-

though this approach is not necessarily realistic, the
complexity of a 10T case can reveal biases that affect

real data analyses that cannot be revealed by a 4T
case study.

MATERIALS AND METHODS

The datasets were created using a Markov model of

character transformation and a defined topology over
which the simulations were conducted. The parameter

that was varied in these simulations was the length of

the long branches, while the length of the short
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branches was kept constant. The resulting datasets

were analyzed using parsimony and maximum likeli-

hood. The results of each method were analyzed for

the detection of different types of topological errors

related to the increment of the long branch lengths.

Simulations

In the Markov model, the simulated datasets were

produced with PAML version 2.0g (Yang, 1999). The

stochastic model that determined the character trans-

formation was HKY85 (Hasegawa et al., 1985), with

approximately equal base composition and a

transition/transversion ratio of k 5 5. The a parameter

of the G distribution was set to produce no substitution

rate variation among sites. The topology chosen con-

sists of a 10-taxon tree in which there are 4 long

branches, arranged in two pairs of sister taxa (Fig. 2).

The lengths of the short terminal and internodal

branches were fixed at 0.01 and 0.02, respectively. The

length of the long branches was increased from 0.1 to

1.5 with an increment of 0.1 between each set of repli-

cates (Fig. 2); thus, long branches ranged from being

10 to 150 times the length of other terminal branches.

One hundred dataset replicates of 1 kb were produced

for each of the 15 long branch lengths. Additionally,

two other sets of replicates were produced with longer
behaviors for increasing amounts of similarly struc-

tured information.

FIG. 2. The modeled tree of the 10T case analyzed in this work.
There are 4 long branches, arranged in two pairs of sister taxa. The

length of these long branches varied in the range indicated. The

other 13 branches were modeled with the indicated fixed length.



set of replicates. These values were plotted against the
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Dataset Analysis

Parsimony. All datasets were analyzed in an

equally weighted nonadditive parsimony analysis us-

ing PAUP* (Swofford, 1999). Additionally, the datasets

were analyzed under a different character weighting

scheme, with a transition/transversion cost equal to

5. Tree search strategy consisted of performing 100

duplicates of stepwise addition and TBR branch swap-

ping.

Likelihood. The datasets of 1 kb were analyzed in

PAUP* (Swofford, 1999) under two different stochastic

models in the likelihood analyses. One of them was the

true model (Hasegawa et al., 1985), with the parameter

values under which the sequences were created

(nst 5 2, variant 5 HKY, tratio 5 2.5). The second

model used was Jukes–Cantor (JC; Jukes and Cantor,

1969), the simplest model of stochastic evolution that

uses a single parameter for all types of substitution

(nst 5 1). The larger datasets (5 and 10 kb) were ana-

lyzed only under the true model in order to briefly

explore the effect of different sample sizes. Tree

searches in maximum-likelihood analyses were per-

formed with one round of TBR branch swapping ap-

plied to the best of the 14 different trees (including

the true tree) that were found in all of the parsimony

analyses of all the simulated datasets.

The estimation of branch lengths for the complete

set of 1-kb matrices was analyzed with two different

values of the maximum number of branch length

smoothing passes (maxpass 5 20 and maxpass 5 1000).

Since differences in the frequency of recovery of each

topology were smaller than 1%, the analysis of larger

datasets was done with 20 smoothing passes.

Bias Analysis

The analysis of results was focused on the detection

of the most common topological errors. Here, these

errors are referred to as biases when a systematic pref-

erence for an incorrect answer or a certain type of

incorrect answer (i.e., types of errors) is detected in

methods while analyzing finite datasets. These pre-

ferred incorrect answers are similarly referred to as

biases in the literature of simulations (e.g., Bruno and

Halpern, 1999). This terminology is used here too, al-
though its use does not imply the strict statistical mean-

ing of the term bias, since topologies are only awk-

wardly characterized as statistical parameters.
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The diversity of incorrect topologies was analyzed

and two different types of errors were recognized with

respect to the location of the four long branches in

accordance with their compatiblity with previously

proposed biases (Fig. 3). A third type of error that does

not involve the position of long branches also was

counted (short-branch rearrangement) since it was ob-

served among the results (Fig. 3). Since the aim of this

study was the detection of tendencies to consider a

particular kind of topology as optimal, the percentage

of instances in which a method found the modeled

tree and any of the three errors was measured in each
length of the long branches in order to detect biases

associated with that particular parameter variation

FIG. 3. Types of topological errors found in the present study with

labeled long branches. Long-branch attraction topologies were

counted when unrelated long branches were recovered as sister taxa

in the optimal tree. Long-branch repulsion topologies were counted

when at least two of the long branches were recovered as sister taxa
of a short branch. The third type of error, short-branch re-

arrangement, was counted when an incorrect topology contained

the correct pairs of long branches separated (clades 112 and 9110).



one long-branched taxon included), and the 6T case

(all long-branched taxa excluded). These datasets were

Perspectives on the performance of parsimony and
270

(long branch length). In these plots the sum of all per-

centages can exceed 100% because of the presence of

multiple optimal solutions for a particular replicate.

Kuhner and Felsenstein (1994) explored the accuracy

of several methods in a simulation study in a 10T case.

Although their approach to the 10T case was quite

different from that analyzed here, they also were con-

cerned with the existence of biases in phylogenetic

methods. However, despite their interest in biases, the

topological distance measures that they used for com-

paring the incorrect topologies are not sensitive to the

distinction of the multiple biases that may exist in

different methods (i.e., they would not specifically dis-

tinguish between LBR and LBA).

Character Sampling

As stated before, biases are properties of methods

dealing with finite datasets, in contrast to statistical

consistency, which is an asymptotic property of a

method performing with an infinite sample of charac-

ters. However, the trends observed in successively

larger but finite datasets were briefly explored in order

to examine patterns within the range of dataset sizes

that are normally used by practicing systematists.

Thus, datasets with an increasing number of characters

(1, 5, and 10 kb) also were analyzed with parsimony

and with maximum likelihood assuming the correct

model. This should not be interpreted as a prediction

for statistical consistency because a seemingly mono-

tonic trend observed in simulated finite datasets may

be reversed in a larger analysis and thus does not

ensure that the method is consistent (Kim, 1998; Sid-

dall, 1998).

Taxon Sampling

The presence of long branches is commonly associ-

ated with biases in methods of phylogenetic recon-

struction. More specifically, the interaction of two long

branches commonly is the cautionary problem of phy-

logenetic methods. Since most of the observed errors

in this study are related to the location of the long
branches, the set of the simulated matrices of 1 kb, also

was analyzed excluding some of those long branches,

exploring the effect of the presence of one, two, or
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three long branches (Fig. 4). These modified matrices

will be referred to as the 9T case (one long-branched

taxon excluded), the 8T-Farris case (two long-branched

sister taxa excluded), the 8T-Felsenstein case (two long-

branched nonsister taxa excluded), the 7T case (only
analyzed as above.

RESULTS
likelihood in these simulations can vary. One might

consider only the frequency of recovery of the “true”
FIG. 4. Correct trees of the different taxon-sampling cases analyzed,

when long branches were alternatively excluded from the datasets.
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topology. However, as we have suggested, there is

more than what is immediately apparent in such a

consideration. There are the kinds of errors and biases

found as well as how those errors are mitigated by

increased information content. All three are consid-

ered here.

True Topology Recovery

Among the results both of parsimony and of likeli-

hood analyses it was found that the performance of

these methods decreases with increased long branch

lengths. Two main differences are noted in this graph.

First, differentially weighted parsimony (using a char-

acter weighting scheme similar to that of the simulated

model) outperforms equally weighted parsimony,

while in maximum likelihood the situation is the oppo-

site. In accordance with previous results (Yang, 1997;

Takahashi and Nei, 2000), it is seen here that maximum-
likelihood analyses using a wrong model can outper-

FIG. 5. Percentage of recovery of the correct topology in the 10T case

correspond to equally weighted parsimony, differentially weighted parsi

likelihood assuming the Jukes–Cantor model analyses.
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equally weighted parsimony. Second, the parsimony

and likelihood (true model) curves have different

shapes (Fig. 5). Parsimony recovered the true topology

with a high level of frequency when the length of the

long branches was up to 0.4 or 0.5, depending on the

character weighting scheme (i.e., up to 40 or 50 times

the length of the other terminal branches). In this zone,

parsimony recovered the modeled tree between 100

and 94% of the replicates, while likelihood’s perform-

ance dropped almost linearly from 98% to 50%. Maxi-

mum likelihood (assuming the true model) outper-

formed parsimony when long branches were longer

than 0.5 or 0.7 substitutions per site, depending on the

character weighting scheme, but still performed poorly

(Fig. 5). Parsimony, on the other hand, exhibited a logis-

tic curve, decreasing only slowly at first and then rap-

idly losing performance through an inflection point

slightly greater than 0.5 substitutions per site. For those
who like direct extrapolations to real cases, it could be
interesting to note that the zone in which parsimonyform those using the correct model although the parsi-

mony analysis using the correct model did better than has a high level of performance coincides with the
(1-kb datasets) versus the length of the long branches. These curves

mony, maximum likelihood assuming the true model, and maximum
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branch length range inferred in the Biologically Mean-

ingful Region known from real dataset analysis (Nei

et al., 1995).

Biases

As stated above, a principal interest of this work was

not so much when methods get the right tree (Fig. 5)

but how they get it wrong (Figs. 6–9).

As shown before, the performance of parsimony in

the utilized region of the 10T tree space starts to de-

crease when long branch lengths are equal to or longer

than 0.5 (i.e., 50 times the length of short branches). The

incorrect topologies recovered in parsimony analyses

almost invariably fall into only one of the recognized

types of errors: long-branch attraction. Almost all er-

rors had the four long branches clustered together but

the pattern of relationships of the other short-branch

taxa was wholly correctly recovered (Figs. 6 and 7).

Only a low percentage of replicates found incorrect
trees that do not fit into this category (less than 4%

FIG. 6. Percentage of recovery of the correct tree and the different ty

length of the long branches for the differentially weighted parsimony

each curve.
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the LBA topology are essentially symmetrical in the

two character weighting schemes explored (i.e., if par-

simony retrieved a wrong answer, it was a topology

compatible with LBA). These results closely fit the pre-

dictions made with previous simulation studies: if nu-

cleotide transformations are driven by a Markov model

of change (debatable in itself, but convincing to some),

parsimony has a strong bias in preferring the clustering

of long branches whether they are related or not. Since

in a 10T case there are 2,027,024 wrong possible topolo-

gies, it is worth noting that parsimony systematically

prefers only 15 of these when long branches are much

longer than the other terminal branches. Parsimony

suffers from a strong but identifiable bias (LBA).

The incorrect topologies recovered by likelihood

analysis are rather different from those found by parsi-

mony. In particular, there are several types of errors

among the incorrect trees found by likelihood (Fig. 8).

In the region of the tree space in which parsimony

performs better (long terminal branches up to 50 times
longer than the short terminal branches), incorrect to-
when long branch lengths varied between 0.3 and 0.7). pologies recovered by likelihood fall within two of the

types of errors recognized. One of them, appearingThus, the curves of recovery of the true topology and
pes of topological errors in the 10T case (1-kb datasets) versus the

analyses. A representative of each kind of error is depicted beside



FIG. 7. Percentage of recovery of the correct tree and the different types of topological errors in the 10T case (1-kb datasets) versus the

ses
length of the long branches for the equally weighted parsimony analy

when long branches were more than 10 times the length

of the short terminal branches, was compatible with

long-branch repulsion, a bias previously detailed by

Siddall (1998). The other error found in this region

appears among short branches and concerns consider-

able short-branch rearrangement (SBR). When the

lengths of the long branches varied between 0.5 and 1.5

the proportion of LBR compatible topologies increased

dramatically to 89%. In addition, other types of errors

(LBA), start to appear with a frequency that varied

between 1 and 16%.

When the long branch lengths were set to 2.0 substi-

tutions per site, likelihood’s performance was even

worse. LBA compatible topologies increased slightly,

reaching a frequency of recovery of 22% and LBR com-

patible topologies occurred in 86% of the errors.

The curve depicting recovery of the correct topology

for likelihood with the simpler (JC) model is similar

to that found with the true model, but JC performs

better when long branches are lower than 1.0. The

topological errors found by the JC likelihood analysis
are similar to those with the true model, but differences

exist in their frequencies (Fig. 9). There are only two

errors found in likelihood analysis (JC) that steadily
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increase with the long branch length. LBA compatible

topologies appears with shorter long branch lengths

(0.7) but with higher frequencies (up to 43%) than when

assuming the true model. Long branch attraction is

already predicted to appear in likelihood analyses with

oversimplified models (Yang, 1996; Bruno and Hal-

pern, 1999). LBR compatible topologies appeared at

the same long branch length values (0.1 substitutions

per site) and reached higher levels of frequency of

recovery (up to 43%) in the JC model analysis than

was found using the correct model.

Character Sampling

The curves of true topology recovery in the equally

weighted parsimony analysis have a similar shape for

the three sets of matrices (1, 5, and 10 kb). Differences

exist in the region in which long branch lengths are 40

to 60 times the length of other terminal branches (Fig.
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10). In this region, parsimony behaved better as the

number of characters increased. In other regions per-

formance was observed to be equal for the different



FIG. 8. Percentage of recovery of the correct tree and the different types of topological errors in the 10T case (1-kb datasets) versus the

od
length of the long branches for likelihood analyses assuming the true m

sequence lengths (i.e., either 100% or 0%). All topologi-

cal errors recovered in parsimony analyses of larger

datasets (5 and 10 kb) fall within the LBA category.

In contrast to the pattern observed in parsimony, the

likelihood (true model) analyses showed very different

results in the larger datasets. Likelihood performance

in recovering the true topology was better as the num-

ber of characters increased (Fig. 11). These results are

not surprising since the likelihood analysis was done

assuming the true model of character transformation

and, thus, is a best-case scenario in which statistical

consistency may be obtained. Nonetheless, maximum

likelihood still performed worse than parsimony when

the long branch lengths were equal to or lower than

0.5 substitutions per site.

Taxon Sampling

In the 6T case (all branches short) both parsimony

and likelihood (irrespective of the model) recovered
the true topology in 100% of the replicates. However,

the results for the datasets containing any long-

branched terminal taxa depicted different results for
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each method. In parsimony analyses, the addition of

a single long-branched taxon (7T case) had little effect

on the performance of the method in recovering the

true tree (Figs. 12 and 13). When the long branch length

was 1.5 substitutions per site, 17 or 24% of the topolo-

gies recovered were incorrect, depending on the char-

acter weighting scheme. The addition of two long

branches resulted in different results depending on

where the taxa were located in the true topology. Add-

ing two long branches can have either drastic effects

on the performance of the method (8T-Felsenstein) or

almost none (8T-Farris). The curves of the 9T and the

10T cases show better performance than the 8T-

Felsenstein case but a worse performance than the 8T-

Farris case, as expected. Again, parsimony retrieves

an incorrect topology only when two unrelated long

branches are present in the tree.

The results of likelihood analyses with an increasing

number of long branches are different from those for

parsimony (Figs. 14 and 15). One of the most striking

differences is that the presence of even a single long
274 Pol and Siddall
branch (7T case) produced a drastic drop in the ability

to recover the true topology, irrespective of the model



FIG. 9. Percentage of recovery of the correct tree and the different types of topological errors in the 10T case (1-kb datasets) versus the

length of the long branches for likelihood analyses assuming the oversimplified JC model. A representative of each kind of error is depicted
beside each curve.

(Figs. 14 and 15). The addition of two long branches

affects this even more and occurs irrespective of

whether they are related or unrelated taxa in the true

tree (8T-Farris or 8T-Felsenstein). The 9T case per-

formed similar to the 8T-Farris case under both models

of analysis. The incorrect topologies recovered in these

analyses showed the three recognized types of error

(LBR, LBA, and SBR). There are some differences in
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the curves of topological errors recovered under the
two assumed models, due mainly to the higher propor-

tion of SBR errors recovered in the JC model analyses.

DISCUSSION

The aim of this study was to analyze the performance
of maximum likelihood and parsimony in order to

discover possible biases of these methods, focusing on

a more complex scenario than previous 4T case studies
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ful to be aware of the existence of such biases, in order

to be suspicious of the outcome of a particular method

when the optimal tree is in a certain “zone” of the tree

space. In several cases, phylogeneticists have ques-

tioned the results of real dataset parsimony analyses

based on a suspicion of the presence only of the known

LBA bias for this method (e.g., Allard and Miyamoto,

1992; Huelsenbeck, 1997, 1998; Stiller and Hall, 1999;

Philippe and Germont, 2000; Sanderson et al., 2000;

Wiens and Hollingsworth, 2000). Similar circumspec-

tions were applied to likelihood results from some real

dataset analyses, since it is well known that strong

violations of the assumed model can lead to misleading

results, such as LBA (Sullivan and Swofford, 1997).

An examination of the raw results of the parsimony

and maximum-likelihood performances shows that
both methods perform poorly when long branches co-

exist with short branches. Again, it should be noted

that these results are not interpreted here as reasons
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FIG. 10. Percentage of recovery of the correct topology in the 10T case versus the length of the long branches for the different character-

sampling cases analyzed (1, 5, and 10 kb) in the equally weighted parsimony analyses.
FIG. 11. Percentage of recovery of the correct topology in the 10T case versus the length of the long branches for the different character-

sampling cases analyzed (1, 5, and 10 kb) in likelihood analyses assuming the true model.
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FIG. 12. Percentage of recovery of the correct topology versus the length of the long branches for the different taxon-sampling cases analyzed

(1-kb datasets) in the differentially weighted parsimony analyses. The correct tree for each taxon-sampling case is depicted beside each curve.
FIG. 13. Percentage of recovery of the correct topology versus the length of the long branches for the different taxon-sampling cases analyzed

(1-kb datasets) in the equally weighted parsimony analyses. The correct tree for each taxon-sampling case is depicted beside each curve.
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FIG. 14. Percentage of recovery of the correct topology versus the length of the long branches for the different taxon-sampling cases analyzed

orr
(1-kb datasets) in likelihood analyses assuming the true model. The c

for discarding these methods, but rather as information

concerning possible biases in these methods when het-

erogeneity in branch length is present. Although nei-

ther parsimony nor maximum likelihood properly han-

dled long branches in these simulations, they do not

suffer in the same way or from the same problems.

The analyses of topological errors in the cases analyzed

revealed the presence of only two strong bias for

parsimony, long-branch attraction (as was also sug-

gested by Kim (1993) in a 8T case). In contrast, in

these cases, maximum likelihood did not infer the

correct position of long branches retrieving topol-

ogies compatible with more than one kind of error

(e.g., LBR, LBA, SBR), two of which were found to

increase with the long branch length even when the

model is correct. The presence of LBA in likelihood

analysis with oversimplified models was previously

noted, because such models would underestimate the

actual number of substitutions in long branches, as
parsimony does (Huelsenbeck, 1995; Gaut and Lewis,

1995; Yang, 1996, 1997; Sullivan and Swofford, 1997;

Bruno and Halpern, 1999). However, the presence
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ect tree for each taxon-sampling case is depicted beside each curve.

both of LBR compatible topologies under oversimpli-

fied models and of LBA topologies under the true

model was unexpected.

The implication of these differences between parsi-

mony and maximum likelihood is relevant for the

identification of putative misleading results from

analyses of real datasets. In such cases, the true topol-

ogy is unknown, and knowledge of the existence of

a bias is useful only if the misleading results are

identified by a particular topological outcome. Long-

branch attraction bias can be suspected if two long

branches are depicted as sister groups in a parsimony

analysis or in a likelihood analysis. In contrast, if

two long branches are distant from each other, long-

branch repulsion can be suspected only in a maxi-

mum-likelihood analysis, since parsimony does not

suffer from this error in any case studied so far. If such

bias-related topology is present, phylogeneticists can

investigate the problem in order to determine what
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bias may be affecting the outcome of a particular

analysis (Huelsenbeck, 1997, 1998; Siddall and Whit-

ing, 1999).



FIG. 15. Percentage of recovery of the correct topology versus the length of the long branches for the different taxon-sampling cases analyzed

(1-kb datasets) in likelihood analyses assuming the oversimplified JC model. The correct tree for each taxon-sampling case is depicted beside
each curve.

Parsimony suffers from only one bias (LBA) that

is typified by a particular topological pattern (long

branches depicted as sister taxa) making the identifi-

cation of the putative presence of a misleading result

easy in a real data analysis. If we consider parsimony

as a valid method for phylogeny reconstruction, we

can be suspicious of its results only if long branches

are depicted as sister groups (since it is the only out-

come of the only known bias).

In contrast, the existence of such a variety of topo-

logical errors in maximum-likelihood analyses makes

the adoption of this strategy difficult. It appears from

our results that the mere existence of marked branch

length heterogeneity in a tree could be indicative of

the putative existence of misleading results in a likeli-

hood analysis, irrespective of their number or loca-

tion.

An important difference between likelihood and

parsimony relevant for the detection of long-branch-
related errors in real dataset analysis is the influence

of the presence of a single long branch in the modeled

tree (7T case). The steep decrease in likelihood
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performance contrasts with the high level of perfor-

mance observed in parsimony. Notably, this 7T case

provides some information concerning the question

of parsimony outperforming likelihood only because

it happens to be biased in a useful direction. With only

one long branch (7T), and no other to be “correctly”

attached to, parsimony is behaving much like it does

in the 8T-Farris in most of the explored tree space.

Only when long branches are notably long, does the

8T-Farris outperform the 7T case in some replicates

(by a maximum of 9 to 13 replicates, depending on

the character weighting scheme), presumably due to

LBA (Figs. 12 and 13). Thus, according to these results

for extremely long branches, it is only in those 9 to

13% of replicates that parsimony retrieves the correct

answer simply because it happens to be biased in a

useful direction.

In contrast, likelihood is still suffering, probably

from a failure to correctly estimate ancestral states.
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The most empirical way to evaluate a suspected LBA

problem in a real dataset is to run the analyses while

alternately excluding one of the long branches, since
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long branches cannot attract each other when they

are not simultaneously present (Lyons-Weiler and

Hoelzer, 1997; Siddall and Whiting, 1999). The results

of the 7T case indicate that this strategy will be useful

for parsimony analysis but may be misleading or

uninterpretable in likelihood analysis. Other meth-

ods have been proposed for identifying LBA in real

datasets (Hendy and Penny, 1993; Huelsenbeck, 1998;

Sanderson et al., 2000); however, these model-based

approaches entail the assumptions that underlie the

schism between supporters of cladistic and likelihood

approaches and are unlikely to be adopted widely.

The behavior of datasets with longer sequences (5

and 10 kb) suggests that likelihood analysis can over-

come its poor performance. However, this would be

the case only if the whole sequence fits the assumed

model. With increasing sequence lengths, it would

be harder to justify the unique model assumption,

and different segments of the sequence evolving un-
der different models can lead to statistical inconsis-

tency in maximum-likelihood analysis (Chang, 1996;
Siddall, 1998; Farris, 1999).
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